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ABSTRACT

We study state estimation via wireless sensor networks over fading
channels affected by random packet loss. In the configuration exam-
ined, the sensors send their measurements to a single gateway, which
decides upon the source coding scheme and the sensor transmitter
power levels. The decision process is carried out on-line and adapts
to changing channel conditions to achieve an optimal trade-off be-
tween estimation quality and sensor energy expenditure. In particu-
lar, if some channel conditions are poor, then the gateway commands
the corresponding sensors to increase power levels and use multiple-
description coding. Simulations based on measured channel data
illustrate that the proposed scheme gives excellent results.

Index Terms— wireless sensor networks, power control,
multiple-description coding

1. INTRODUCTION

The use of wireless sensor networks (WSNs) has attracted significant
interest; see, e.g., [1–3]. The driving force behind this evolution
from wired to wireless is the low deployment cost: There is no need
for extensive wiring, either in new installations or for upgrading old
systems. Furthermore, wireless sensors can be placed where wires
cannot go, or where power sockets are not available.

A drawback of wireless channels lies in that they are subject to
fading and interference, which frequently causes packet errors. The
time-variability of the fading channel can be alleviated by adjusting
the power levels and the transmitted packet lengths. To keep packet
error rates low, short packet lengths and high transmission power
should be used. However, the use of high transmission power is
rarely an option in WSNs: in most applications sensor nodes are
expected to be operational for several years without the replacement
of batteries; see, e.g., [4, 5]. In addition, sending short packets may
imply large quantization effects unless careful coding is used.

In the present work, we consider an LTI nx-dimensional system:

x(k + 1) = Ax(k) + w(k), k ∈ N0 � {0, 1, . . . }, (1)

where the initial system state x(0) ∈ N (0, P0), and P0 is nx × nx.
In (1), w = {w(k)}k∈N0 is i.i.d., where each w(k) ∈ N (0, Q).

To remotely estimate the state sequence x = {x(k)}k∈N0 , a
network of M sensors is used. Each sensor m provides a noisy mea-
surement signal, say ym = {ym(k)}k∈N0 :

ym(k) = Cmx(k) + vm(k), m ∈ {1, 2, . . . , M}, (2)
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Fig. 1. State Estimation with a WSN having M = 2 sensors.

where vm = {vm(k)}k∈N0 is i.i.d. with each vm(k) ∈ N (0, Rm).

The values in (2) are coded and transmitted at an appropriate
power level over a fading channel (generating random packet loss)
to a single gateway. Received packets are then used to estimate x(k)
by means of a time-varying Kalman Filter (KF) which takes into ac-
count packet loss. To keep the sensors simple and energy efficient,
sensor nodes are not allowed to communicate with each other. In
particular, coding is carried out independently. To achieve robust-
ness in the presence of packet loss, the sensors are allowed to use
multiple-description coding (MDC) at a set of predefined bit-rates.

Within the above context, the main contribution of the present
paper lies in developing a centralized dynamic controller. It is lo-
cated at the gateway and decides upon the transmission power level
and coding scheme to be used by each sensor. The controller uses
elements of nonlinear (stochastic) predictive control [6,7] and trades
sensor battery use for estimation accuracy. To further conserve en-
ergies, a pre-designed set of codebooks is stored at each sensor, and
the controller sends only codebook indices and coarsely quantized
power increments to the sensor nodes, whenever deemed necessary.
Fig. 1 depicts the overall configuration of the system under study.

The present work extends our recent paper [8] where only power
control was examined.

2. PRELIMINARIES

In this section, we present background material on the components
of the scheme in Fig. 1, namely, the coding schemes at the sensors,
the wireless channels, and the state estimator used at the gateway.
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2.1. Multiple-Description Coding

The idea behind MDC is to create separate descriptions, individually
capable of reproducing a source to a specified accuracy and, when
combined, being able to refine each other. In this work, we will
consider MDC based on index-assignments (IAs) and lattice vector
quantization [11].

In IA-based MDC, the source vector ym(k) is first quantized
using a central quantizer Qc resulting in the central reconstruction
ŷc

m(k) yielding a distortion Dc
m = E‖ym(k) − ŷc

m(k)‖2 given by

Dc
m ≈ G(Λc)2

2(h(ym(k))−bc
m(k)), (3)

where G(Λc) is the dimensionless normalized second moment of
the lattice Λc, h(ym(k)) is the differential entropy of the ran-
dom vector ym(k) and bc

m(k) is the bit-rate of the central quan-
tizer at time k, see [12] for details.1 We note that (3) is sim-
ply the distortion of a single-description (SD) lattice quantizer
operating at bc

m(k) bits. The central reconstruction ŷc
m(k) is

mapped to Jm(k) descriptions by an invertible IA function α,

i.e., α(ŷc
m(k)) �→ (ŷ0

m(k), · · · , ŷ
Jm(k)−1
m (k)). These descrip-

tions are independently entropy coded and transmitted separately
to the gateway. We will assume that the packet-loss probabilities
pi

m(k), i = 0, . . . , Jm(k) − 1, for the Jm(k) descriptions, are i.i.d.
with probabilities pi

m(k) = pm(k). Furthermore, we also restrict
attention to the symmetric situation where the bit-rate bi

m(k) of the
ith description formed at the mth sensor is the same for all i (i.e.,
we have bi

m(k) = bm(k)/Jm(k)) and the distortion observed at the
gateway depends only upon the number of received descriptions and
not on which descriptions are received. In particular, it was shown

in [12], that the expected distortion D
(j)
m (k) due to reconstruction

using any subset of 1 ≤ j < Jm(k) descriptions is approximately
given by

D(j)
m (k) ≈ Jm(k) − j

2jJm(k)
G(S)ψ2

(4)

× 2
2Jm(k)

Jm(k)−1 (bc
m(k)−bm(k)/Jm(k))

22(h(ym(k))−bc
m(k))

where G(S) is the dimensionless normalized second moment of a
hypersphere and ψ is a function of the vector dimension and number
of descriptions, see [12] for details. If all descriptions are received,
the distortion is given by (3). In the scalar case, we have G(S) =
G(Λc) = 1/12 and if Jm(k) = 2, we have ψ = 1. Thus, in this

case, the side distortion Ds
m(k) = D

(1)
m (k) is given by

Ds
m(k) ≈ 1

4 · 12
22h(ym(k))2−2(bm(k)−bc

m(k)). (5)

For a fixed bit-rate bm(k), the side description bit-rate is fixed at
bi
m(k) = bm(k)/Jm(k). However, the central bit-rate bc

m(k) can be
chosen within the range bm(k)/Jm(k) < bc

m(k) < bm(k). A large
central rate bc

m(k) leads to a small central distortion Dc
m(k) and a

large side distortion Ds
m(k), and vice-versa, see (3) and (4). Thus,

there exists an MDC design trade-off, which is governed by the ratio
1 < φ � Vs/Vc, where Vs and Vc denote the volume of the Voronoi
cells of the side quantizers and central quantizer, respectively.

1The quantizer Qc is a lattice quantizer meaning that the partition cells
of the quantizer are given by the Voronoi cells of the underlying lattice Λc.
The expression (3) is derived under a high-resolution assumption, but will in
practice be accurate for bit rates as low as three bits.

2.2. Transmission Effects

We will model transmission effects by introducing the binary
stochastic arrival processes γi

m = {γi
m(k)}k∈N0 :

γi
m(k) =

(
1 if si

m(k) arrives error-free at time k,

0 otherwise,
(6)

where si
m(k) denotes the ith encoded description of the mth sensor

at time k. The success probabilities λi
m(k) � P{γi

m(k) = 1}
satisfy:

λi
m(k) =

“
1 − βm

`
um(k)gm(k)

´”bi
m(k)

, (7)

where bi
m(k) denotes the packet length (which we take equal to the

bit-rate), gm(k) refers to the channel power gain, i.e., the square
of the magnitude of the complex channel2, um(k) is the trans-
mission power used by the mth sensor radio power amplifier, and
βm(·) : [0,∞) → [0, 1] is the bit-error rate (BER). The latter is a
monotonically decreasing function, which depends on the modu-
lation scheme employed. Notice that the product of probabilities,

i.e.,
QJm(k)−1

i=0 λi
m(k), is independent of the number of descriptions

Jm(k), since with symmetric MDC, bi
m(k) = bm(k)/Jm(k).

It follows from (7), that one can improve transmission reliability
and, thus, state estimation accuracy for a given wireless propagation
environment, by transmitting shorter packets and/or by simply in-
creasing the power levels used by the transmitters. Unfortunately, as
we have seen in Section 2.1, smaller values of packet lengths bm(k)
will lead to larger quantization distortion. Furthermore, in WSNs it
is of fundamental importance to save energy.

Before proceeding, we note that one can quantify the energy
used by each sensor m ∈ {1, . . . , M} at a given (discrete) time
instant, k, via Em(bm(k)um(k)), where

Em(bm(k)um(k)) �

8<
:

bm(k)um(k)

r
+ EP if um(k) > 0,

0 if um(k) = 0,
(8)

where bm(k) =
PJm(k)−1

i=0 bi
m(k) = Jm(k)bi

m(k), and EP denotes
the processing cost, i.e., the energy needed for wake-up, circuitry
and sensing. Thus, the total energy consumption at sensor m at time
k, is independent of Jm(k), the number of descriptions chosen.

Due to physical limitations of the radio power amplifiers, the
power levels are constrained, for given values {umax

m }, according to:

0 ≤ um(k) ≤ umax
m , ∀k ∈ N0, ∀m ∈ {1, 2, . . . , M}. (9)

2.3. State Estimation with Intermittent Sensor Links

We will assume that the gateway knows, whether packets received
from the sensors contain errors or not. Thus, at any time k, past and
present realizations of the overall transmission process, say

γ̄k � {γi
m(k − �)}�≥0, i∈{0,...,Jm(k)−1}, m∈{1,...,M}, (10)

are available at the gateway. Thus, for state estimation purposes, the
system amounts to sampling (1)-(2) only at the successful transmis-
sion instants of each sensor link. Consequently, the time-varying KF
for the system (1) with output matrix

C(k) �
ˆ
γ1(k)(C1)

T . . . γM (k)(CM )T
˜

, (11)

2Note that gm(k) is here defined to include also path-loss, power ampli-
fier efficiency, antenna gain and noise figure.
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where γm(k) = 1, if at least one of the Jm(k) descriptions is suc-
cessfully received at sensor m (and zero otherwise), gives the best
linear state estimates; see, e.g., [9]. These are given by:

x̂(k + 1) = Ax̂(k) + K(k + 1)
`
ŷ(k + 1) − C(k + 1)Ax̂(k)

´
,

where ŷm(k) denotes the reconstruction at sensor m based on the
0 ≤ j ≤ Jm(k) received descriptions, and where

ŷ(k + 1) �
ˆ
ŷ1(k) ŷ2(k) . . . ŷM (k)

˜T

K(k) � P (k)C(k)T `
C(k)P (k)C(k)T + R(k)

´−1

P (k + 1) � AP (k)AT + Q − AK(k)C(k)P (k)AT

R(k) � diag
`
R1 + D1(k), . . . , RM + DM (k)

´
,

(12)

with {Dm(k)} being the distortions. If at least one but less than
Jm(k) descriptions are received, then Dm(k) is given by (4). If all
Jm(k) descriptions are received, then Dm(k) is given by (3). The
recursion in (12) is initialized with P (0) = P0 and x̂(0) = 0.

3. ON-LINE DESIGN OF CODING AND POWER LEVELS

We have seen that sensor transmission power and bit rate design
involves a trade-off between transmission error probabilities (and,
thus, state estimation accuracy) and energy use. We will next present
a controller which optimizes this trade-off over a future prediction
horizon. To keep the sensors simple, the controller is located at the
gateway. Its output contains information on the power levels and the
codebook indices to be used by the M sensors, see Fig. 1.

3.1. Signaling

To save signal processing energy at the sensors, we would like to
limit signaling from the gateway to the sensors as much as possible.
In particular, the command signal for each sensor m will contain,
in addition to the codebook index jm(k), a finitely quantized power
increment, say δum(k) ∈ Um, rather than the actual power value,
um(k). Upon reception of the pair (δum(k), jm(k)), the mth sensor
chooses the codebook jm(k) and reconstructs the power level to be
used by its radio power amplifier by simply setting

um(k) = um(k − 1) + δum(k). (13)

3.2. Cost Function

In order to trade energy consumption for estimation cost, at each
time instant k, the proposed controller examines the finite horizon
cost function

V (k) = V1(k) + ρV2(k), (14)

where ρ ≥ 0 is a design parameter and

V2(k) �
k+NX

�=k+1

MX
m=1

Em(bm(�)um(�)) (15)

is the predicted energy consumption over a horizon N . In (14),

V1(k) �
k+NX

�=k+1

E
˘

trace{P̄ (�)}¯ (16)

quantifies the estimation cost through the expected trace of3

P̄ (k) = P (k) − K(k)C(k)P (k). (17)

3If the quantization noise was Gaussian and i.i.d., then P̄ (�) would cor-
respond to the conditional posterior covariance of x̂(k); see, e.g., [8, 9].

Expectation in (16) is with respect to {ŷm(k)}, i.e., the set of possi-
ble reconstructions due to receiving different subsets of descriptions
for each sensor. The probability distribution of this set depends upon
the decision variables, i.e., bit-rates and power levels.

3.3. The Resultant Controller

At every time instant k, the predictive controller first finds the opti-
mal set of pairs {δum(k), bi

m(k)} through a brute-force search strat-
egy, where the cost function V (k) is evaluated for all possible com-
binations of bit-rates and power levels over the prediction horizon.

Each sensor can either do standard single-description coding
(SDC) or MDC. Moreover, for any given bit-rate, the controller also
needs to decide upon the number of descriptions Jm(k) and the
level of redundancy between the Jm(k) descriptions. To develop
a simple method to select the coding scheme, we recall that the en-
ergy consumption at a given sensor is independent of the number
of descriptions chosen. Furthermore, under high-resolution assump-
tions, it is reasonable to assume that the quantization error process
at any given sensor does not contain significant information about
current and past measurements of any of the sensors.4 Thus, from
the KF point of view, ŷm(k) amounts to a noisy version of ym(k);
the smaller the variance of this noise, the better the estimate x̂(k).
This motivates us to adopt a method where, having chosen the opti-
mal (δm(k), bi

m(k)) and, thus um(k), see (13), the controller picks
the quantization scheme which results in the minimum expected dis-
tortion on ym(k) by using the expressions in Section 2.1. Further-
more, given the bit-rate bm(k) = Jm(k)bi

m(k) and by considering
{λi

m : i = 0, . . . , Jm(k)}, ∀Jm(k) as weights, the simple method
to find the optimal number of descriptions as well as the optimal
amount of redundancy between the descriptions proposed in [13]
will be used.

4. SIMULATIONS

We consider a system model (1) with A =
ˆ

1.6718 −0.9948
1 0

˜
, Q =

1/2I , and P0 = 0.3I . We simulate a WSN having M = 2 sensors
with C1 = [1 0], C2 = [0 1], and variances R1 = R2 = 1/100.
Power levels are constrained to the interval 0 ≤ um(k) ≤ 3×10−4,
increment values are restricted to ±3 × 10−5. Each sensor may use
either an SD scalar quantizer at a bit-rate of bm(k) ∈ {3, . . . , 8}
bits, or an MD scalar quantizer with two descriptions. In the MDC
case the total bit-rate is restricted to bm(k) ∈ {6, 7, 8} bits, so that
the side description rates are bi

m(k) ∈ {3, 3.5, 4} bits.5

We use measured channel data obtained at the 2.4 GHz ISM
band within an office space area at the Signals and Systems Group
of Uppsala University, Sweden. The top diagram of Fig. 3 illustrates
the channel gains of two realizations, one with horizontal and one
with vertical polarization.

In Fig. 2, we have shown the expected distortion (before the KF)
when coding ym(k) as a function of the channel gain, for Jm(k) ∈
{1, 2}. For that purpose, we have fixed the power levels to um(k) =
4 × 10−5 and the bit-rates to bm(k) = 7. Notice that, when the
channel gain is weak, e.g., below -105 dB, it is better to use MDC
than SDC.

4Unless we utilize substractively dithered quantizers, the quantization er-
ror will generally not be independent of the input signal. However, the quan-
tization error can be made uncorrelated with the input signal.

5The Voronoi cell volume ratio φ of the MD quantizers, is restricted to
φ = 3, 5, 7, see Section 2.1 and Fig. 2.
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Fig. 2. Expected distortion (in dB) as a function of the channel gain.
φ = Vs/Vc indicates the ratio of the volumes of the Voronoi cells
for MDC.

A complete simulation of the proposed algorithm with N = 1
and ρ = 106 for s = 5000 samples is depicted in Fig. 3. In the
bottom two diagrams of Fig. 3, we have used dots to illustrate when
MDC is used. Notice that, for example, whenever the channel gain
is dropping to low levels, the proposed controller chooses MDC.

We quantify our results via V � 1
s

Ps−1
k=0 V (k), see (14), result-

ing in V = 0.1113. For comparison, we also carried out simulations
of the controller under the same conditions, but where only SDC was
allowed, yielding V = 0.1220. Thus, in the present case, the use of
MDC gives a performance improvement of 8.77%.

5. CONCLUSIONS

We have shown that state estimation via WSNs over fading channels
can be improved by the use of a novel multiple-description quantizer
and power controller. A simulation study revealed that gains of more
than 8% was possible by using simple MDC schemes at the sensors
and without significantly increasing the complexity at the gateway.
This gain can be further improved by reducing the maximum power
level available at the sensors.
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